Pest Management

Pest: any living thing that competes with us for food, fiber, or space, or that threatens the health of people or domestic animals.

What is a pest?

- Insects
- Diseases (fungi, bacteria, Viruses)
- Weeds
- Wildlife

Integrated Pest Management

A decision-making process that utilizes all available pest management strategies to prevent economically-damaging pest outbreaks and reduces the risks to human health and the environment.

Pest Management

- To control within a tolerable range
 - Prevent damage
 - Stop damage
 - Protect “crop” from damage
 - Limit damage

Tolerance

- How much damage can your plants tolerate?
- How much can you tolerate?
- What are the consequences of doing nothing?
Do you use IPM?

Control Strategies
1. Cultural
2. Physical/ Mechanical
3. Biological
4. Chemical

IPM Process
- Prevention
- Monitor
- Identify plants & pests
- Choose strategy

Know the key pests

Monitor (Scouting)
Monitor

Phenology

Growing Degree Days

• Helpful websites:
 - http://www.aos.wisc.edu/~sco/clim-history/7cities_eau_claire.html#GrowDeg
 - http://www.soils.wisc.edu/uwex_agwx/thermal_models/degree_days
 - http://datcpservices.wisconsin.gov/pb/index.jsp

Accurately diagnose/identify

“Have a pest. I have some pesticide in my garage. I’ll just use that.”

Identify

What kind of pest is this?
A. Generalist
B. Specialist
C. Opportunistic

CO Potato Beetle
Management strategies

Integrated Pest Management

1. Cultural
 - Resistant varieties
 - Right placement
 - Proper planting
 - Proper care – mulching, watering, fertilizing
 - Sanitation
 - Rotation

Cultural: resistant varieties

Do you know some other examples?

Cultural: proper placement

What are some other factors to consider?
Cultural: proper planting

Cultural: proper care

Name some other cultural practices we use to care for our plants.

Cultural: sanitation

Cultural: rotation

How many years should a full rotation cycle be?
Integrated Pest Management

2. Mechanical/Physical
 - Remove and/or destroy
 - Physical barriers

Physical: remove/destroy
- Knock off plant with a strong blast of water

Physical: remove/destroy
- Rake and remove diseased leaves

Physical: remove/destroy
- Prune out diseased branches

Physical: remove/destroy
- Pick off insects by hand

Physical: remove/destroy
- Bait & Trap insects and wildlife
Are Japanese beetle traps effective?

Physical: remove/destroy
- Hoe or pull weeds

Physical: barriers
- Mulch to suppress weeds

Physical: barriers

Integrated Pest Management

3. Biological
- **organisms**
- **“Beneficials”**
 - Types:
 - Predators
 - Parasites
 - Pathogens
 - Methods:
 - Introduce
 - Augment
 - Conserve
Biological control

• Predators
 – Birds, amphibians, reptiles, mammals
 – Invertebrates
 • spiders & mites
 • Insects
• Parasites & parasitoids
 – Parasitic flies and wasps
 • Attack eggs, larvae, nymphs & pupae
 • On outside of pest or inside pest

Biological Control

– Pathogens = microbials
 • “B. t.” – Bacillus thuringiensis (bacteria)
 – Var. kurstaki (Btk) – infects caterpillars
 – Var. san diego & var. tenebrionis – infects CO potato beetle & elm leaf beetle
 – Var. israelensis (Bti) – infects mosquitoes, black flies, fungus gnats
Biological control

- **Gypsy moth**
 - Gypchek – Nucleopolyhedrosi - NPV (virus)
 - Entomophaga maimaiga (fungus)
- **Nematodes** – for iris borers, etc. as soil drench
- **Milky spore disease** - *Bacillus popilliae* or *lentimorbus* (bact.)
 - Japanese beetle – not hardy in WI so pops. do not build

Integrated Pest Management

4. **Chemical** – “The Last Resort”

ALWAYS read & follow label recommendations!

Organic
- oils
- soap
- sulfur
- copper
- baking soda & water
- hot pepper wax

Synthetic
- carbaryl (Sevin)
- diazinon, malathion, acephate, chlorpyrifos

Pesticides

- **Herbicides**
- **Insecticide**
- **Fungicide**
- **Rodenticide**

- A. Fungus
- B. Creeping Charlie
- C. Japanese beetle
- D. Mouse
Chemical control

- Organic
 - Biopesticides
 - Organisms – pathogens (e.g., Bt, spinosad)
 - Botanicals – derived from plants
 - Biorationals
 - Insecticidal soap
 - Horticultural oils
 - Inorganics
 - Sulfur

Integrated Pest Management

- Biological Botanicals
 - Rotenone
 - Pyrethrum
 - Neem oil (azadirachtin)
 - Corn gluten meal

Remember, botanicals are toxic when applied but degrade quickly.

Chemical Controls: Biopesticides

- Botanical pesticides
 - Advantages:
 - degrade rapidly; reduces potential exposure
 - fast acting – “knock-down”
 - low mammalian toxicity
 - low plant toxicity
 - selective effects on pests

- Pyrethrum
 - Derived from chrysanthemums
 - Pyrethrins are six compounds which occur naturally in pyrethrum
 - Pyrethroids are not botanical but synthetic compounds based on the pyrethrins
 - “knock down” properties
 - Combined with piperonyl butoxide
 - Not “organic”

- Neem
 - From seeds, leaves, fruits, and bark of the Neem tree
 - Azadirachtin is the active ingredient – extract of neem seeds
 - Very broad spectrum – insects, fungi and mites!
 - Many formulations available
Chemical Controls: Biopesticides

- **Sabadilla**
 - From seeds of a tropical lily

- **Ryania**
 - From seeds of a woody shrub

Chemical Controls: Biopesticides

- **Nicotine**
 - **EXTREMELY TOXIC!**
 - Home preparations strong enough to kill insects also strong enough to be toxic to humans.

Chemical Controls: Biopesticides

- **Miscellaneous**
 - Plant essential oils
 - Cedar, lavender, eucalyptus, citronella, canola, garlic, pepper, etc.
 - (15 plus EPA reg.)
 - Repellents
 - High concentrations can cause skin irritation
 - Pennyroyal and citrus are toxic if ingested
 - Baking soda (potassium and sodium bicarbonate)
 - Vinegar (acetic acid)
 - Needs to be 35% solution (cider vinegar is 5%)

Chemical Controls: Biopesticides

- **Biorationals**
 - Naturally occurring substances with pesticidal properties
 - Insecticidal soaps
 - Horticultural oils
 - Inorganics
 - Sulfur
 - Lime sulfur
 - Copper-containing pesticides
 - Iron phosphate

Chemical Controls: Biopesticides

- **Insecticidal soaps**
 - Kill soft-bodied insects
 - Low plant toxicity
 - Consistent formulation
 - Not household soaps
 - Soaps can be used as "spreaders"
 - Formulated to be used to kill insects on plants
 - Effective at killing insects
 - Low phytotoxicity

Chemical Controls: Biopesticides

- **Horticultural oils – petroleum based**
 - Dormant oil
 - Used on dormant plants not succulent tissue
 - Summer oil
 - Diluted dormant oil
 - Ultrafine oil
 - Highly refined to remove harsh residues
 - Safe for succulent, growing tissue
Chemical Controls: Biopesticides

- Inorganics
 - Sulfur
 - Oldest known pesticide (3,000 yrs. ago)
 - Wettable powder, dust or liquid
 - Insecticidal and fungicidal properties
 - Diseases – powdery mildew, rust, blights, fruit rots
 - Insects – spider mites, psyllids and thrips
 - Causes plant injury in hot, dry weather
 - Cannot be mixed with others

- Lime sulfur
 - Dormant spray
 - Diseases – blight, anthracnose and powdery mildew
 - Insects – scales, eriophyid mites and spider mites
 - Burns plants at high temps.
 - Irritates skin and eyes

- Copper-containing pesticides
 - Bordeaux mixture (not approved for organic production)
 - Copper sulfate and lime
 - Diseases – late blight; septoria and early blight of tomatoes; downy mildew; bacterial leaf spots, blights, anthracnose and cankers
 - Insects – repellent
 - Iron phosphate
 - Slug and snail control

Chemical Controls: Biopesticides

- Biopesticides
 - Lithium aluminum silicate
 - Safe use for organic production

Trade name and common name and active ingredient (ai)

- Bonide Daconil 2787
 - Controls diseases on vegetables, roses, flowers and lawns.
 - Makes 16 gallons.
 - Active ingredient: Lithium aluminum silicate

Resources

- http://pmep.cce.cornell.edu/profiles/extoxnet/
 - EXTOXNET – Extension resource

Signal Words

- Danger
 - Highly toxic
- Warning
 - Moderately toxic
- Caution
 - Slightly toxic
Toxicity

<table>
<thead>
<tr>
<th>Common name</th>
<th>Trade name</th>
<th>Field L50</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyphosate</td>
<td>Roundup</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>BHC</td>
<td>DDT</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Methoxyflur</td>
<td>Malathion</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Malathion</td>
<td>Malathion</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Sevin</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Bendiocarb</td>
<td>Bendiocarb</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Chemical control

- **Synthetics: Insecticides**
 - Carbamates
 - Sevin (carbaryl)
 - Bendiocarb
 - Organophosphates
 - chlorpyrifos
 - Diazinon
 - disulfoton
 - Malathion
 - Chlorinated hydrocarbons
 - Halogenated hydrocarbons

- **Synthetics: Fungicides**
 - Chlorinated hydrocarbons
 - Chlorothalonil
 - PCNB
 - Phthalimide
 - Captan
 - Benimidazole
 - Benomyl
 - Acylalanine
 - metalaxyl
 - Dithiocarbamates
 - Mancozeb
 - Maneb
 - Thiram

PPE

- Long rubber gloves
- Respirator
- Safety glasses
- Head-toe boots

Other considerations

- Pre harvest interval
- Restricted use pesticides
 - PAT
- Indirect affects
- Disposal
- Storage
- Mixing

Summary

- Evaluate problem and positively identify pest
- Consider the options
 - Including the consequences of not treating
 - Consider chemical control
 - If damage cannot be tolerated
 - And other methods are not sufficient to manage
- Select the least toxic option
- Observe all safety precautions when handling
- Store safely
- Dispose of properly