

Purdue University

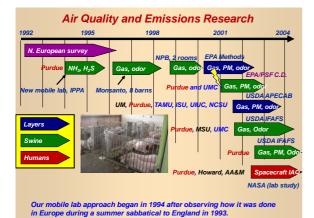
Air Emission Sources and Impacts Confinement buildings Outdoor manure storage Manure treatment facilities Land application of manure Mortalities Neighborhood nuisance Compliance with regulations

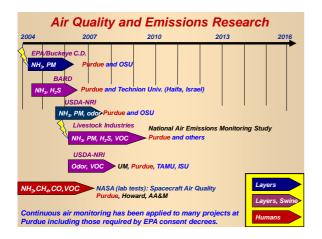
2/20/2013

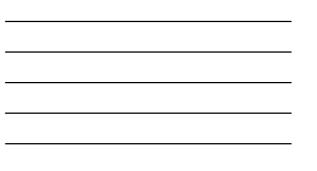
Air Emissions from Livestock

- Ammonia
- Hydrogen sulfide
- Volatile organic compounds (VOC)
- > Particulate matter (TSP, PM₁₀, PM_{2.5})
- > Odor (as sensed by humans)
- ➢ Greenhouse gases (CO₂, CH₄, N₂O)
- > Pathogens (viable particles)

Increasing Knowledge about Emissions


Laboratory tests


Scientific models


- Kinetics and process dynamicsControlled tests of abatement ideas
- Field measurements
 - Baseline source emission rates
 - Emission characteristics
 - Demonstrations of abatement methods
 - Ambient downwind concentrations

- Process-based
- Component emissions, e.g. barns, manure storage, etc.
- System models (show tradeoffs and consequences)
- Regulatory models
 - Often shaped by untimely political and societal pressures
 - Marked by simplicity, unfairness, arbitrariness, and inaccuracy!
- Can be influenced by scientific knowledge in a positive way.
- Multi-state and interdisciplinary research and education


Federal Enforcement (Authority: U.S. Clean Air Act of 1990) Lawsuits and consent decrees U.S. v. Premium Standard Farms, 2001 Air and water \$350,000 penalty

- > Lagoon emission monitoring
- > Barn monitoring tests, six (6) months long
- > Test soybean oil sprinkling in one (1) of the barns.
- > U.S. v. Buckeye Egg Farms, 2004
 - > Air issues
 - > \$880,000 penalty
 - > Barn emissions monitoring and controls
 - > Test dust and ammonia abatement
 - > Brief summer tests showed 700 tpy > 250 tpy limit!

National Ambient Air Quality Standards (NAAQS)								
Pollutant	Level, µg/m ³	Averaging time						
PM ₁₀	150 (primary and secondary)	24-h						
PM _{2.5}	12 (primary) 15 (secondary)	Annual (3-yr average)						
	35 (primary and secondary)	24-h (98 th percentile, averaged over 3 yrs)						
		ealth protection, including protecting the characteristic characteristics and the characteristics and						

health of "sensitive" populations such as asthmatics, children, and the elderly. Secondary standards provide public welfare protection, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings."

Source: http://epa.gov/air/criteria.html

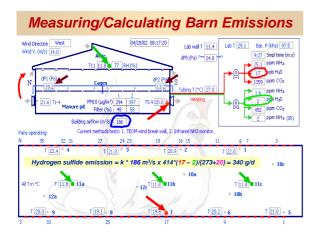
Federal Regulations > EPCRA (Community Right to Know Laws) > Must report if NH₃ or H₂S emissions ≥ 100 lbs/day > Failure to report may result in significant fines. > Clean Air Act > National Ambient Air Quality Standards > "Substances of concern" (PM, NMVOC, etc.) > Defines "Major Source" thresholds (annual permits) > CAFO = 700 dairy cows or 1000 calves > U.S. EPA began regulating AFOs in 2000

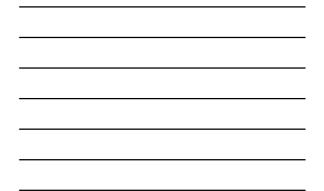
- > EPA lacked data to determine whether AFOs violated these regulations
- > 2003: NRC panel recommended U.S. EPA improve its methods of estimating AFO emissions.

- > Funded by egg, pork, dairy, chicken checkoff dollars.
- > Turkeys, ducks and beef groups declined participation

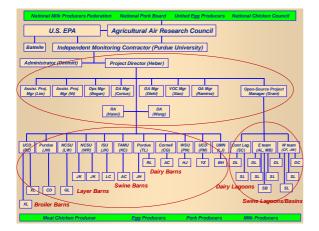
Objectives of the NAEMS

- > <u>Quantify air emissions</u> from livestock production.
- Provide reliable data for developing and validating barn and lagoon emission models.
- <u>Develop national consensus on methods of measuring</u>, calculating, & reporting emissions.




NAEMS Approach Livestock barns (38) and manure storages (9) tested with same protocols to determine baseline emissions Real-time barre missions for two years – 2300 sensors, 2.5B data pts. Subtracted inlet from outlet concentrations. Manure storages for 2 weeks per season Quality assurance/quality control Oversight of U.S. EPA Office of Air Quality Quality Assurance Project Plan (Category 1) On-site audits > Pollutants: PM2.5, PM10, TSP, NH3, H2S, CO2, CH4, VOC > Follutarits: Fimito 137, Kms, n23, CO2, CMs, VOC > Add-on studies measured N20, odor and pathogens. > Collected as much "metadata" as possible. > Weather: wind, temperature, humidity, barometric pressure, solar. > Environment: temperature, humidity > Process: worker and cow activity, flushing, fans > Biomaterials: manure, feed, bedding, milk, water

Ge	neral Timeline of the NAEMS
2004	Protocol Development and Farm Selection Criteria
2005	PI Selection, Staffing, Budgeting, Producer Education
2006	Site Selection, Quality Assurance Project Plan
2007	Setup of Emission Monitoring at 20 Farms
2008	Data Collection, Analysis & Reporting, Audits
2009	Data Collection, Analysis & Reporting, Audits (1)
2010	Submit Final Report to EPA, Further Analysis (2)
2011	EPA Worked on EEMs, Further Analysis, Publish (3)
2012	SAP, EPA Worked on EEMs, Publish (14)
2013	SAP, EPA Publishes EEMs, Publish


Was industry-funded NAEMS "tainted" or "biased"? No!

- > Tests required by consent decrees or agreements typically funded by industry.
- AARC oversaw budgets and deadlines.
- EPA oversaw methods and data quality.
- > NAEMS followed protocols of past studies and improved methods where possible.
- > "Independent Monitoring Contractor" maintained independence/neutrality.

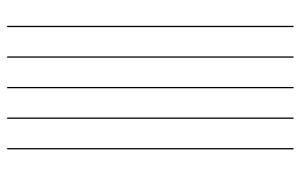
	Monitor downwind exposure
	> Monitored barn inlet air, not comparable to NAAQS
►	Monitor worker/animal exposure
	"Emission concentrations" were measured.
≻	Remove/adjust valid negative concentrations
	Calibration zero offsets caused slight negative concentrations due to instrument noise.
≻	Remove/adjust valid negative emissions
	> Brief negative emissions were calculated when background > exhaust concentrations.

Timeline Since Data Submission

7/31/10 Data reports (6,211 pages) submitted to EPA Dairy: 1,420 pp (barns) + 616 pp (open) = 2,036 pages 9/27/10 AAQTF Air Emissions Standardization Workshop, NC 1/13/11 EPA posted data to "www.epa.gov/airquality/agmonitoring/data.html" 6/30/11 536 pages of data analysis submitted to National Pork Board 8/4/11 NAEMS-related ASABE papers (14) presented in Louisville 2/1/12 EPA announced new Science Advisory Board Review EPA's Emissions Estimation Methodologies First meeting March 15-17, 2012 Second meeting March 7-8, 2013

2/29/12 181 pages of data analysis submitted to United Egg Producers 7/24/12 379 pages of data analysis submitted to Dairy Research Institute\ 12/31/12 20th journal article: NAEMS methods, data and add-on studies.

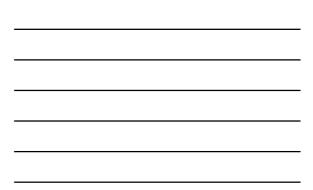
NAEMS Journal Articles (Published)

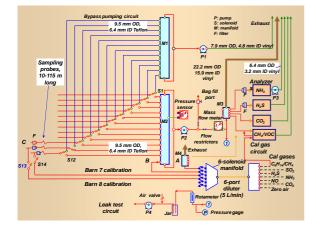

Joo ... '13. Particulate matter emissions from naturally-ventilated freestall dairy barns. Atm Env 69:182-190. Akdeniz... '12. Odor & chem. emissions: Pt 2 - Odor emissions. T ASABE 55(6):2335-2345. Akdeniz... '12. Odor & chem. emissions: Pt 4 - Corr. between sens. & chem. emissions. T ASABE 55(6):2325-2334. Berzmicki... '12. Odor & chem. emissions: Pt 1 - Project overview, collection meth. & Q.C. T ASABE 55(6):2325-2334. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. In 200 of a Chem, emissions PL 1 – Project overview, collection methods 2019 2019 2019
 Bereznickii, "12. Odoł & chem, emissions PL 1 – Project overview, collection meth & Q.C. TASABE 55(6):2325-233
 Chai, "12. Initiation rates at large commercial tayer houses with 2-yr continuous mon. Brit, Poul. Sci. 53(1):1-93.1
 Lin, "12. Enide evaluation of PM measurements using TEOM in a layer house. J. AVMA 62(1):1226-123.
 Lin, "12. Field evaluation of PM measurements using TEOM in a layer house. J. AVMA 62(3):122-335.
 Lin, "12. Termit evaluation of PM measurements using TEOM in a layer house. J. AVMA 62(3):122-335.
 Lin, "12. Nr3, H2S, OO2 and PM emissions from commercial layin-rise layer buildings. Arm. Env. 68, 113(3): 182-01.
 Lin, "12. Aream environmental control of high-rise layer houses. J. California. TASABE 55(5):1009-1920.
 Lin, "12. Aream environmentations from commercial layin-rise layer houses. Arm. Env. 68, 1240-1920.
 Lin, "12. Aream environmentations from commercial mark. hopkinetion of knowledge from exp. Res. ESAP 22:25-35.
 W. "12. Aream environmentations from chemical high-rise and manume-hold layer houses. Arm. Env. 57:165-174.
 Parker, "12. Odor & chem, environmenta high-rise and manume-hold layer houses. Arm. Env. 57:165-174.
 Parker, "13. Layer scale appl. of vibration sensors for famonitoring at layer houses. Sensors 101(1):11590-11804.
 Lin, "14. Large scale appl. of vibration sensors for famonitoring & hopking a hopking. Arm. 2019;710-28.
 Chem, "14. Layer scales appl. of vibration sensors for famonitoring & headingent inter, aar quality data. Atm 2(2):110-128.
 Chem, "14. Layer scales appl. of vibration sensors for famonitoring & headingent inter, aarvac-bit layer house. J. AVMA 62(7):110-128.
 Chem, "14. Layer scales appl. of vibration sensors for famonitoring at layer house. J. AVMA 62(7) 12. 13. 14.

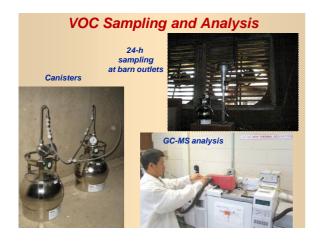
NAEMS Journal Articles (Submitted)

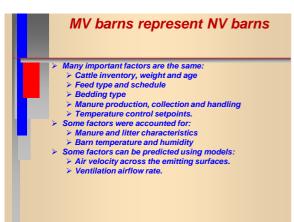
- Wang-Li, et al. (12/13). NAEMS SE layer site: Pt I site specifics & monitoring methodology. T ASABE Li, et al. (1/14/13). NAEMS SE layer site: Pt II particulate matter. T ASABE. Wang-Li, et al. (1/24/13). NAEMS Southeast layer site: Pt III NH; concentrations & emissions. T ASABE. Li, et al. (1/24/13). NAEMS Southeast layer site: Pt III NH; concentrations & emissions. T ASABE. Zhang, et al. (1/24/12). Odor & chem. emissions animal bidgs: Pt S Correlations. T ASABE. Cai, et al. (1/12/12). Odor & chem. emissions animal bidgs: Pt S Correlations. T ASABE. Cai, et al. (1/12/12). Odor & chem. emissions animal bidgs: Pt S Correlations. T ASABE. Grant, et al. (1/30-13). Animonia emissions from lagoons at sow & finishing farms in OK. Atm Env.

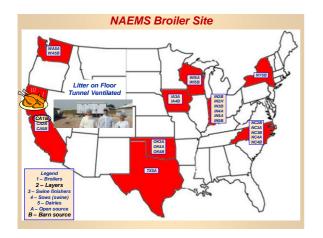
7 7


Gas sampling system with gas tubing and filters, for automated, multi-location sampling

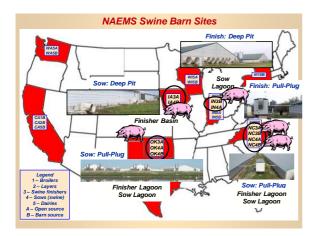


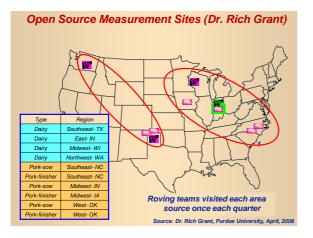




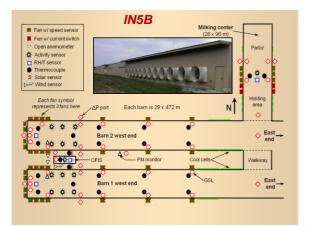

Summary of NAEMS Sites

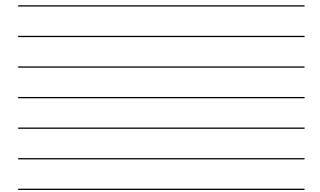

	Ba	irns per	Site	Total r	umber	Number of Area Sites			5
Species	2-b	3-b	4-b	Sites	Barns	Corrals	Lagoons	Basins	Total
Swine	0	4	1	5	16	0	5	1	6
Dairy	5	0	0	5	10	1	3	0	4
Layers	4	0	0	3	8	0	0	0	0
Broilers	1	0	0	1	2	0	0	0	0
Total	6	6	2	14	38	1	8	1	10

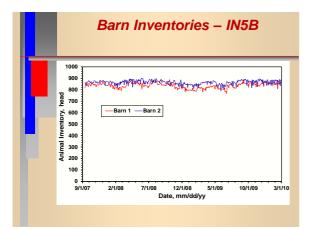

2/20/2013

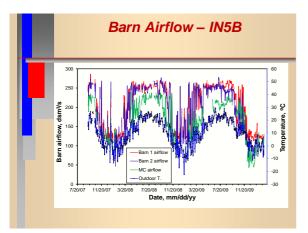


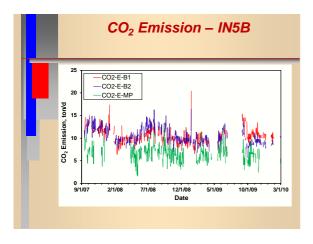


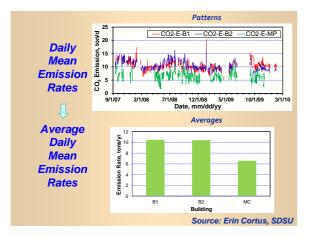


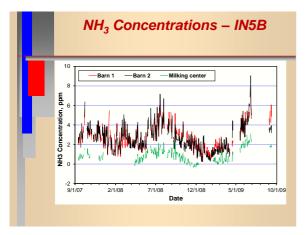

Monitored Dairy Freestall Sites

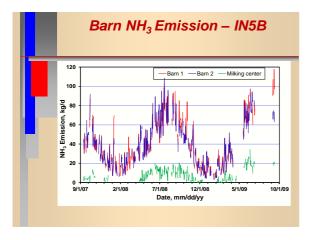

- ≻ IN5B
 - > 2 MV barns and a milking center, manure scraping, 1600 cows/barn.
- > Bedding: separated digested manure solids
 > NY5B
 - > 1 MV freestall barn and 1 milking center, manure scraping
 - > 493 cows per barn
 - > Bedding: separated digested manure solids
- > WI5B
 - > 2 MV freestall barns with 275 and 375 cows.
 - First-year flushing system and second-year scraping system
 - Bedding: mattress/shavings
- ≻ WA5B
 - > 2 NV freestall barns with curtains, flushing (400 and 850 cows/barn)
 - > Bedding: separated manure solids
 - > Dry exercise lots

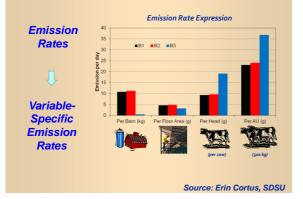


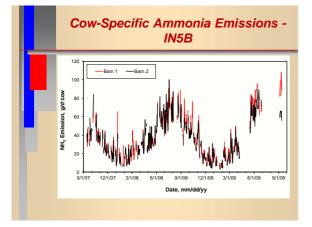


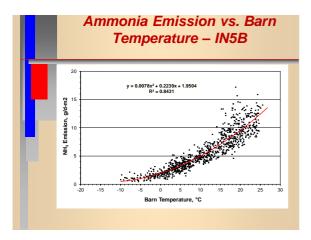


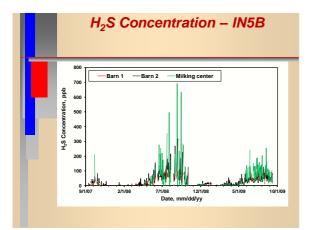


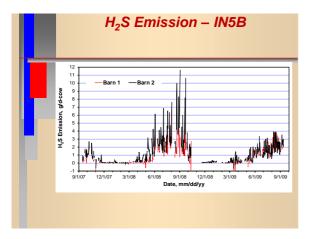


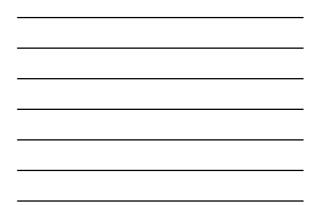


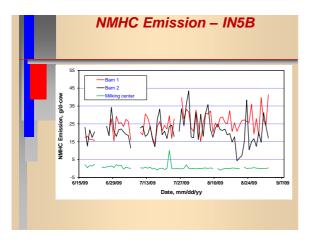


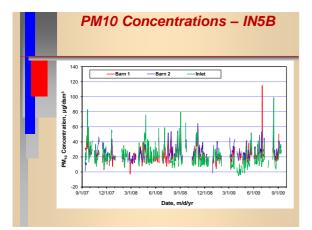

Emission Normalization

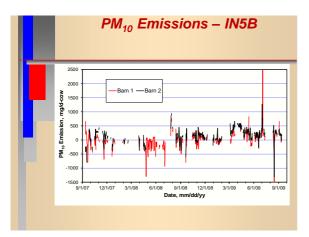


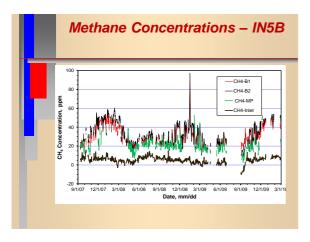


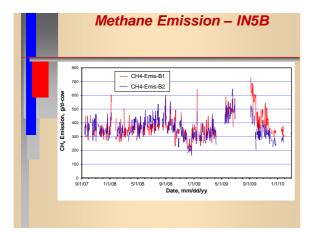


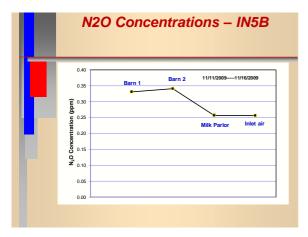


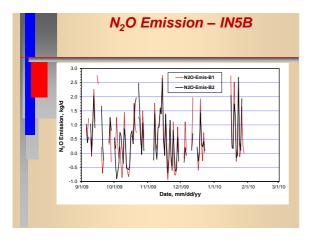


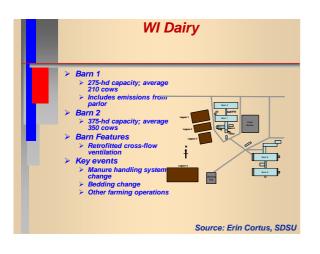


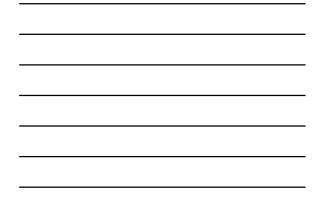


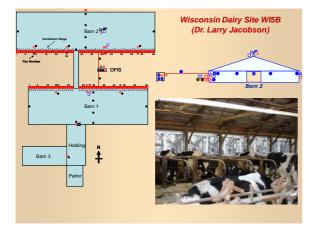


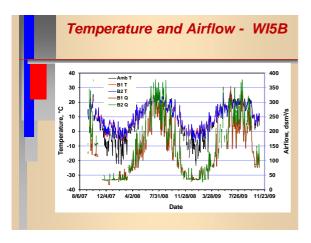


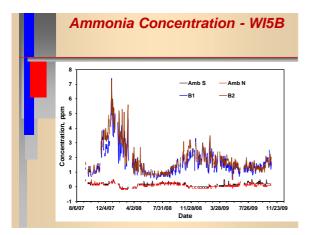


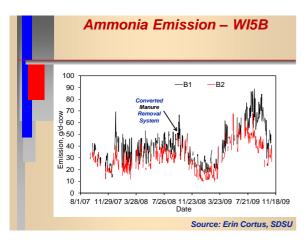


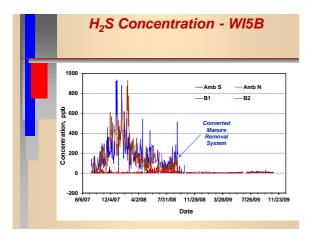


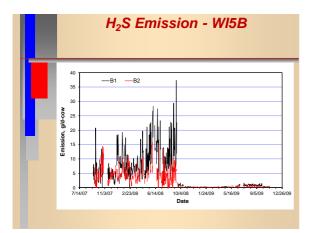


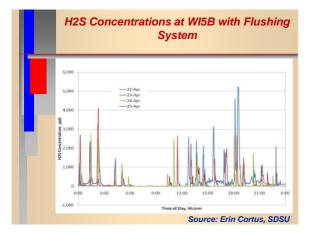


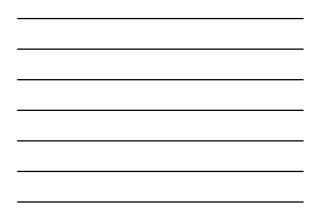


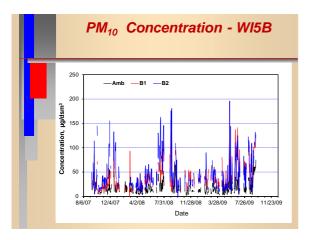




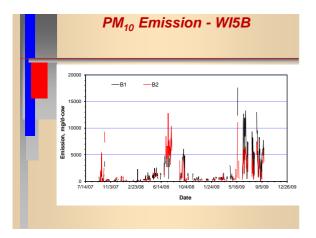


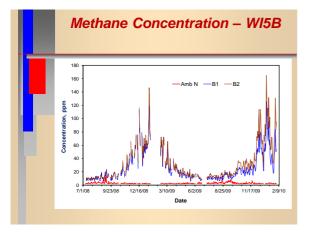


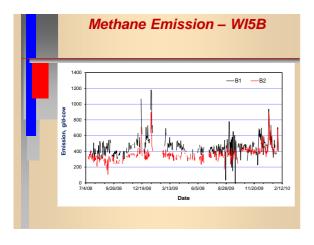


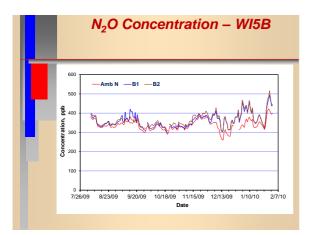


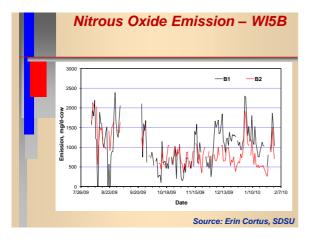


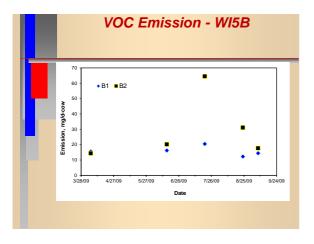


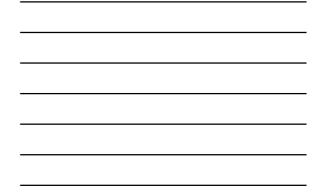


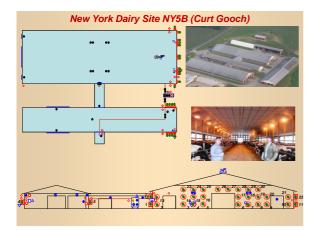


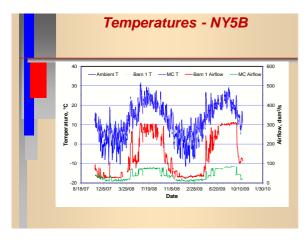


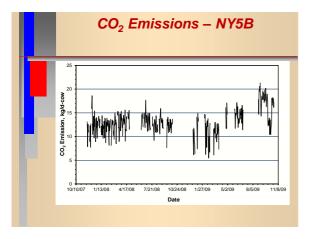


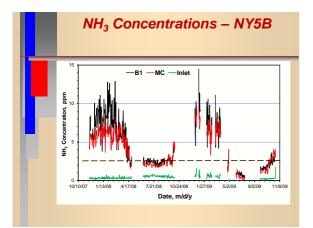


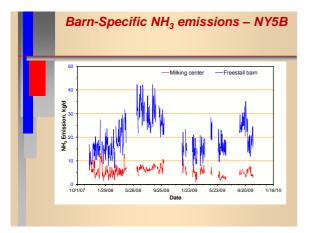


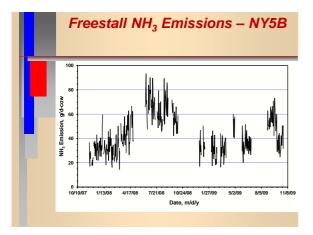


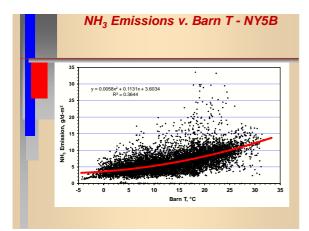


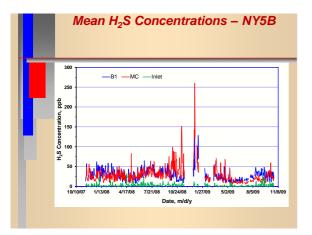


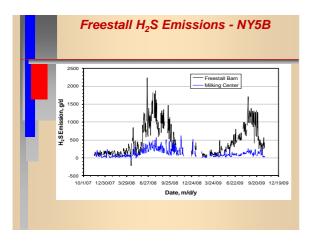


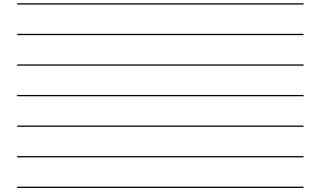


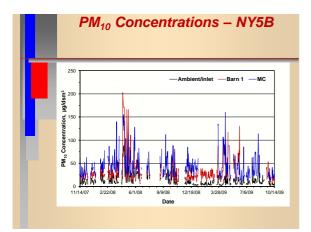


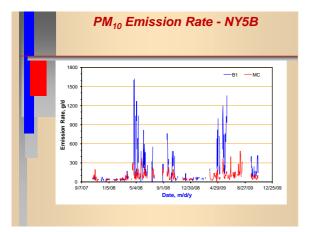


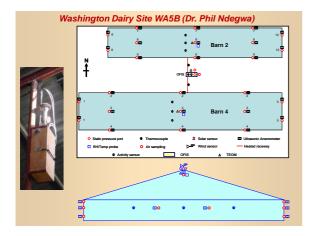


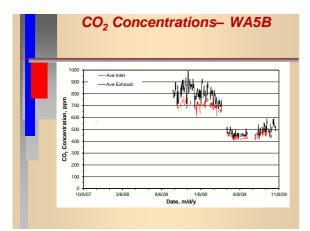


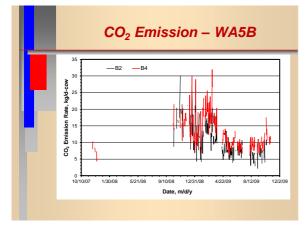


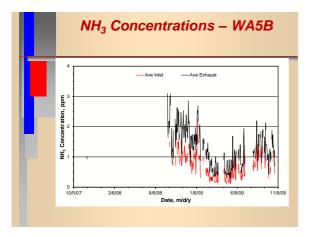


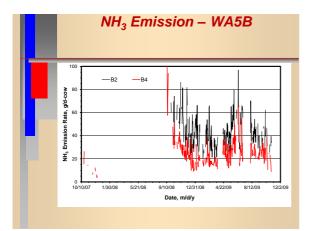


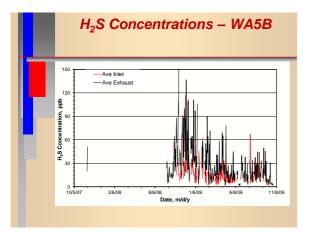


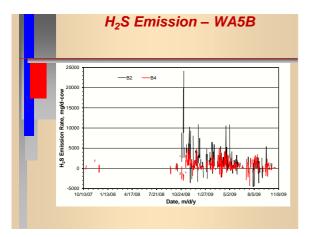


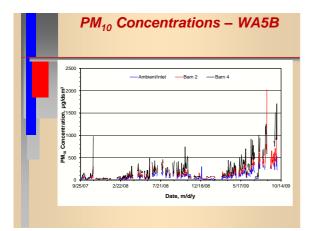


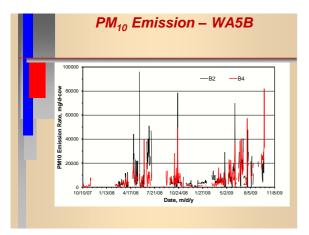




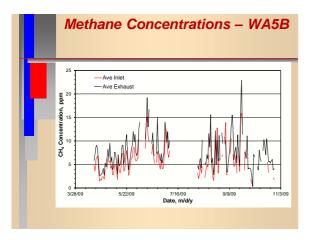


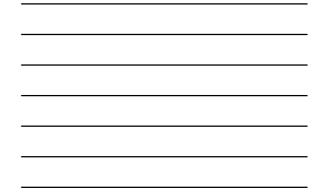


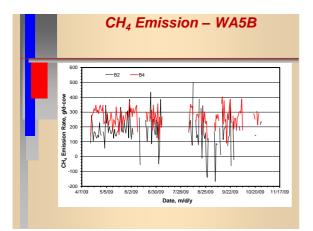


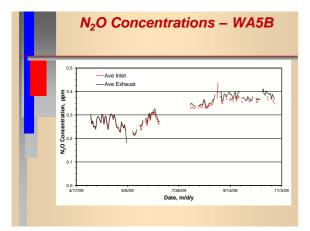


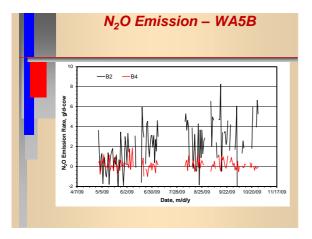


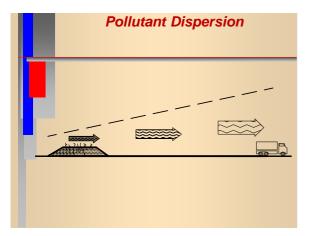


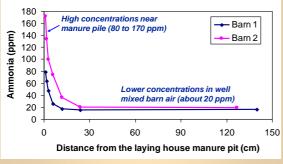


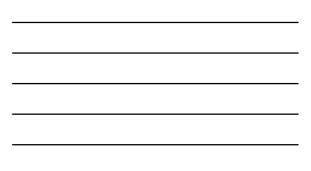




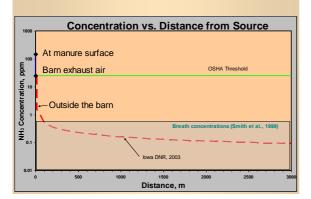




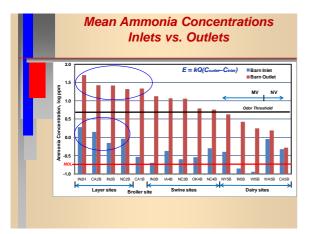


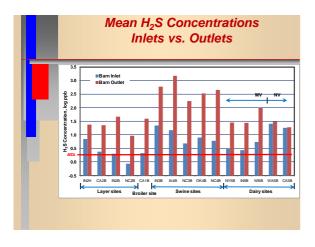


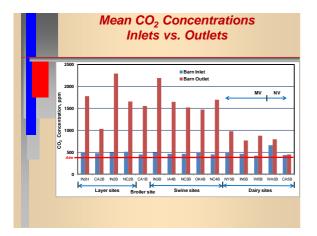
Vertical Gradients of Ammonia in in the Manure Pit of Layer Barn 180 180 160 High concentrations near

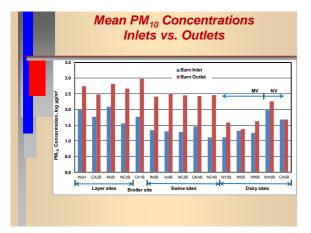

2/20/2013

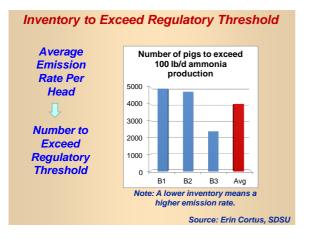
Inlet vs. Ambient Concentrations




Typical Ammonia Concentrations







Average CO₂ emission rates, kg/d-cow

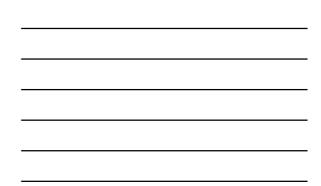
Site	Barn 1	Barn 2	Barn Avg	Lagoon	Farm
Indiana (scrape) incl. MC	14.6	14.2	14.4	0.50	14.9
New York (scrape) incl. MC	14.8	-	14.8	0.50	15.3
Wisconsin (scrape)	18.6	13.6	16.1	0.50	16.6
Average (scrape)			15.1	0.50	15.6
Wisconsin (flush)	18.4	13.4	15.9	0.50	16.4
Washington (flush)	11.1	13.3	12.2	0.50	12.7
Average (flush)			14.1	0.50	14.6
Overall average			14.6	0.50	15.1

Literature: 11.5 to 12.7 g/d-cow

Average NH₃ Emission Rates, g/d-cow

Site	Barn 1	Barn 2	Barn Avg	Storage	Farm	NEET, hd
Indiana (scrape) incl. MC	53.3	48.6	51.0	25.1	76.1	597
New York (scrape) incl. MC	50.0	-	50.0	25.1	75.1	605
Wisconsin (scrape)	45.4	33.2	39.3	25.1	64.4	705
Average (scrape)			46.8	25.1	71.9	632
Wisconsin (flush)	36.3	28.3	32.3	25.1	57.4	791
Washington (flush)	44.2	24.5	34.4	10.9	45.2	1003
Average (flush)			33.3	18.0	51.3	885
Overall average		40.0	61.6	737		
Texas (corral)				193	235	
Literature: 1.1 to 98.4 g/d-co	bw					

NEET=Number (of cows) to Exceed Emission Threshold


Average H	S Emission R	ates, mg/d-cow

Site	Barn 1	Barn 2	Barn Avg	Storage	Farm	NEET, hd
Indiana (scrape)*	1515	1989	1752	2100	3852	11,786
New York (scrape)*	1164	-	1164	2100	3264	13,909
Wisconsin (scrape)	496	310	403	2100	2503	18,138
Average (scrape)			1106	2100	3206	14,159
Wisconsin (flush)	9320	4720	7020	2100	9120	4,978
Washington (flush)	1830	871	1351	3145	4496	10,099
Average (flush)			4185	2623	6808	6,669
Overall average			2646	2361	5007	9,067
Texas (corral)			-		3241	14,008

*Includes milking center (per place)

Literature: 0.8 to 733 mg/d-cow

NEET=Number (of cows) to Exceed Emission Threshold



Site	Barn 1	Barn 2	Barn Avg	NEET, hd
Indiana (scrape) incl. MC	11	153	82	7,575,126
New York (scrape) incl. MC	473	-	473	1,314,837
Wisconsin (scrape)	2629	1537	2083	298,568
Average (scrape)			879	707,234
Wisconsin (flush)	923	1610	1266	491,246
Washington (flush)	8060	6500	7280	85,428
Average (flush)			4273	145,546
Overall average			2576	241,411

Average PM₁₀ emission rates, mg/d-cow

Literature: very limited: 192 (PM10), 360-1000 (respirable), and 600-9600 (inspirable) mg/d-cow

NEET=Number (of cows) to Exceed Emission Threshold

Average VOC Emission Rates, g/d-cow

Site	Barn 1	Barn 2	Barn Avg	NEET, hd		
Indiana (scrape) incl. MC	82.0	71.0	76.5	8130		
New York (scrape) incl. MC	147	-	147	4231		
Wisconsin (scrape)	75.0	69.0	72.0	8638		
Average (scrape)			99	6314		
Wisconsin (flush)	Not measured					
Washington (flush)	184	222	203	3064		
Average (flush)			203	3064		
Overall average			151	4125		

Literature: 24-89 g/d-cow (very limited and partial VOC)

NEET=Number (of cows) to Exceed Emission Threshold

Average CH₄ emission rates, g/d-cow

Site	Barn 1	Barn 2	Barn Avg	Lagoon	Farm
Indiana (scrape) incl. MC	433	419	426	200	626
New York (scrape) incl. MC	453	-	453	200	653
Wisconsin (scrape)	465	379	422	200	622
Average (scrape)			434	200	634
Wisconsin (flush)	457	367	412	200	612
Washington (flush)	175	267	221	200	421
Average (flush)			317	200	517
Overall average			375	200	575

Literature: 360 to 420 g/d-cow (four studies).

Average N₂O emission rates, g/d-cow

Site	Barn 1	Barn 2	Barn Avg	Lagoon	Farm
Indiana (scrape) incl. MC	0.38	0.43	0.41	0.13	0.54
New York (scrape) incl. MC	6.16	-	6.16	0.13	6.29
Wisconsin (scrape)	1.04	0.89	0.97	0.13	1.10
Average (scrape)			2.51	0.13	2.64
Wisconsin (flush)	Not measured				
Washington (flush)	2.03	0.20	1.12	0.13	1.25
Average (flush)			1.12	0.13	1.25
Overall average			1.81	0.13	1.94

Literature: 1-2 g/d-cow

Summary of Dairy Portion of NAEMS

- First long-term NH₃, H₂S, CO₂, CH₄, N₂O, PM₁₀, PM_{2.5}, TSP, VOC, and odor emissions most comprehensive ever
- Freestall barns (9), milking centers (2), manure storage basins (3) and a corral (1) – most representative ever
- > High level of oversight from U.S. EPA Office of Air Quality
- > Collected extensive "metadata" (weather, milk production, etc.)
- > MV freestalls producted the best quality data.
- Mean NH₃ emission > 100 lb/d with > 740 cows at freestall dairies and >240 cows at dairy corrals.
- Mean H₂S emission > 100 lb/d with > 9000 cows at freestall dairies and 14,000 cows at corral dairies.
- CAA's 250 tpy VOC threshold would be exceeded with >3100 cows (flushing) and 6300 cows (scraping) based on relatively limited number of samples.
- > PM emissions were insignificant with respect to regulations.
- > Average whole farm CH₄ emissions ~ 575 g/d-cow.
- > Average whole farm N₂O emissions ~ 2 g/d-cow.

Acknowledgements Funding Agricultural Air Research Council National Milk Producers Federation Dairy Research Institute, Inc. Cooperation and Support

- > Participating farms
- > Site PI's (UM, Cornell, Purdue, UCD, WSU)
- > Data Analysts (SDSU, Univ of MO, Univ Idaho)

