POTW’s As An Emergency Option For Dairy Manure Disposal
— A POTW’s Perspective

2011 Manure Summit
February 15 & 16, 2011
Lambeau Field Atrium

Chris Stempa, Deputy Utilities Director
City of Appleton Wastewater Treatment Plant
Overview of the Appleton Wastewater Treatment Plant (AWWTP)
POTW Considerations and Requirements
Dairy Operator Considerations
Waste Characteristics and Discharge Options
Process Control & Limitations
The AWWTP is advanced secondary wastewater treatment facility designed to treat 15.5 million gallons per day (MGD).
Population served = ~ 75,000.
Q–Q Significant Industrial Users (SIUs) = 5*
 • Flow = 10%, BOD = 30% , TSS = 5%–70%*
Receiving Station Waste Haulers = 10
Septage Waste Haulers = 1
Anually the AWWTP:

- Treats approximately 5 billion gallons of wastewater.
- Treats 20–25 million gallons of hauled waste.
 - 2010 – 18 million gallons leachate, 7.5 million gallons food process
- Treats approximately 250,000 gallons of septage.
- Processes and land applies approximately 20,000 wet tons of biosolids to agricultural fields.
POTW Considerations

- Available Treatment Capacity
- Toxic or inhibitory materials or substances
 - (salts/metals, antibiotics, disinfectants, fungicides)
- Treatment costs ($$$$
 - Waste strength (CBOD, TSS, TVSS, N, P)
 - Waste volumes (rates, HRT)
 - Waste temperature
 - Unwanted materials (sand, gravel, straw, wood, etc.)
- Odors
- Waste delivery
- Biogas yield
- Impact to biosolids production
- Impact to existing authorized users
AWWTP Requirements

- Representative waste characteristic data provided.
- Hauler/generator permitted through POTW.
- Haulers issued facility access cards.
- Certified scale weight needed for billing.
- Waste characteristics “reasonably” consistent.
- Volume of discharge estimated and anticipated discharge schedule made known.
- Communication maintained between generator, hauler, and POTW.
- Limitations or restrictions imposed???
Dairy Operator Considerations

- POTW discharge fees
 - (AWWTP $19.80 – $83.40 per th-gal)
- POTW hours of operation.
 - (AWWTP 6:00 am – 6:00 pm, M–F)
- Haul distance.
- Hauling/transportation fees.
- Tanker type (gravity, pump, pressure).
- Tanker condition (minimizes escape of odors and does not create a nuisance, free of sludge).
- Limitations or restrictions imposed by POTW???
- Farm fertilizer/nutrient balances.
Only two (2) options:
1. “High strength” directly to digestion.
2. “Low strength” to influent headworks.
Waste Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>CBOD (mg/L)</th>
<th>TSS (mg/L)</th>
<th>TVS (%)</th>
<th>N (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWWTP Influent</td>
<td>100–250</td>
<td>350–600</td>
<td>35</td>
<td>10–20</td>
</tr>
<tr>
<td>Industrial(^1)</td>
<td>300–2,500</td>
<td>10–1,000</td>
<td>--</td>
<td>30–100</td>
</tr>
<tr>
<td>Leachate(^2)</td>
<td>500–1,200</td>
<td><150</td>
<td>70</td>
<td>1,000–1,500</td>
</tr>
<tr>
<td>Food Process(^3)</td>
<td>1,300–215,000</td>
<td>250–75,000</td>
<td>40–99</td>
<td>100–3,300</td>
</tr>
<tr>
<td>Dairy Manure Liquid(^4)</td>
<td>16,176</td>
<td>15,000 TS</td>
<td>85</td>
<td>662</td>
</tr>
</tbody>
</table>

1. Typical range of Appleton SIUs >25,000 gallons per day.
2. AWWTP receiving station leachate concentrations.
3. AWWTP receiving station food process waste concentrations.
AWWTP Receiving Station
AWWTP Receiving Station
AWWTP Digester Operation

- Raw Sludge (gal/day): Design Expected 192,000, 2010 100,000
- VS (lb/day): Design Expected 36,500, 2010 19,000
- TS (lb/day): Design Expected 60,800, 2010 42,000
- Gas (ft3/day): Design Expected 218,000, 2010 150,000
<table>
<thead>
<tr>
<th>CONSTANTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Digester Capacity (Ea.)</td>
<td>2,200,000 Gallons</td>
</tr>
<tr>
<td>Digester Capacity (Cu Ft.)</td>
<td>297,000 Cu Ft</td>
</tr>
<tr>
<td>Biogas BTU Equivalent / cu ft Gas</td>
<td>500 BTU</td>
</tr>
<tr>
<td>Gas Production / lb TVS Destroyed</td>
<td>15 Cu Ft (12-20 cuft)</td>
</tr>
<tr>
<td>Avg Daily RS Flow (Gal)</td>
<td>20,000 Gallons</td>
</tr>
<tr>
<td>Avg LSG Output</td>
<td>150,000 Cu Ft / Day</td>
</tr>
<tr>
<td>Est. per Substrate</td>
<td></td>
</tr>
<tr>
<td>Digester Efficiency</td>
<td>80% (Typ. AWWTP AD 38%-45%, 45 day HRT)</td>
</tr>
<tr>
<td>BFP % Solids</td>
<td>40%</td>
</tr>
<tr>
<td>LAB DATA</td>
<td></td>
</tr>
<tr>
<td>Waste Temperature</td>
<td>50 degree F</td>
</tr>
<tr>
<td>Substrate TSS</td>
<td>15,000 mg/L</td>
</tr>
<tr>
<td>Substrate TVS</td>
<td>12,750 mg/L</td>
</tr>
<tr>
<td>% TVS</td>
<td>85%</td>
</tr>
<tr>
<td>CBOD</td>
<td>15,178 mg/L</td>
</tr>
</tbody>
</table>

DIGESTER CALCULATIONS

<table>
<thead>
<tr>
<th>Production Values</th>
<th>Dose 1</th>
<th>Dose 2</th>
<th>Dose 3</th>
<th>General OM Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Feed (Gallons / Day)</td>
<td>6,000</td>
<td>12,000</td>
<td>180,000</td>
<td>Avg = 20,000 gal/day</td>
</tr>
<tr>
<td>Substrate Feed (Pounds / Day)</td>
<td>50,040</td>
<td>100,080</td>
<td>1,501,200</td>
<td>Avg = 8,000 lbs/day</td>
</tr>
<tr>
<td>Avg Daily RS Discharge (Lbs)</td>
<td>165,800</td>
<td>166,800</td>
<td>186,800</td>
<td>Avg = 700 lbs/day</td>
</tr>
<tr>
<td>% Substrate in Avg Daily RS Flow</td>
<td>30.0%</td>
<td>60.0%</td>
<td>90.0%</td>
<td>Avg = 150,000 ft3/day</td>
</tr>
<tr>
<td>TS To Digestion (Lbs)</td>
<td>75.1</td>
<td>1,351</td>
<td>12,510</td>
<td>Avg = 150,000 ft3/day</td>
</tr>
<tr>
<td>TVS in Digestion (Lbs)</td>
<td>538</td>
<td>1,276</td>
<td>10,632</td>
<td>Avg = 150,000 ft3/day</td>
</tr>
<tr>
<td>%Substrate TS of Total Daily Avg Feed</td>
<td>1.8%</td>
<td>3.6%</td>
<td>28.8%</td>
<td>Avg = 150,000 ft3/day</td>
</tr>
<tr>
<td>%Substrate VS of Total Daily Avg Feed</td>
<td>1.3%</td>
<td>2.7%</td>
<td>25.6%</td>
<td>Avg = 150,000 ft3/day</td>
</tr>
<tr>
<td>VSS Destroyed (Lbs)</td>
<td>383</td>
<td>766</td>
<td>6,390</td>
<td>Avg = 150,000 ft3/day</td>
</tr>
<tr>
<td>Pounds VS / Day / Cu Ft (1-Digester)</td>
<td>0.000</td>
<td>0.001</td>
<td>0.005</td>
<td>Avg = 0.05-0.12</td>
</tr>
<tr>
<td>Total Gas Produced (Cu Ft)</td>
<td>5,742</td>
<td>11,484</td>
<td>95,702</td>
<td>Avg = 150,000 ft3/day</td>
</tr>
<tr>
<td>Total Gas Produced (m3 gas/kg VS)</td>
<td>0.561</td>
<td></td>
<td></td>
<td>Avg = 0.60</td>
</tr>
<tr>
<td>% of Avg. Daily AWWTP LSG Output</td>
<td>4%</td>
<td>8%</td>
<td>64%</td>
<td></td>
</tr>
<tr>
<td>Calculated BTU Output</td>
<td>3,445,254</td>
<td>6,890,508</td>
<td>57,420,900</td>
<td></td>
</tr>
<tr>
<td>BTU required heat waste to 95 F</td>
<td>2,502,000</td>
<td>5,004,000</td>
<td>41,700,000</td>
<td></td>
</tr>
<tr>
<td>BFP Solids Out (Wet Pounds)</td>
<td>1,139</td>
<td>1,839</td>
<td>15,325</td>
<td></td>
</tr>
<tr>
<td>BFP Solids Out (Wet Tons)</td>
<td>0.65</td>
<td>1.06</td>
<td>7.66</td>
<td></td>
</tr>
</tbody>
</table>
AWWTP Digester Operation

- Two (2) high rate, complete gas mix mesophilic (77°F – 113°F) anaerobic digesters with a capacity of 2.2 MG per digester.
- Temperature maintained at 95°F +/− 1°F for optimum bacterial stabilization.
- Volatile solids reduction ranges 40–50% (minimum required TVS = 38%).
- HRT typ. 45–days w/ two digesters operating (15 days required by WPDES).
- Desired pH range 6.8–7.2.
- Volatile acids 1,000 mg/L +/−
Anaerobic Digestion Waste Load Allocation

Scenario #1 (Gallons per Day)

- 45,000 Gallons
- 32,000 Gallons
- 20,000 Gallons

- 3 Loads

- 45 day HRT

- Receiving Station
- Waste Sludge
- Primary Sludge

4.4 Million Gallon Digester Capacity

Minimum Required HRT = 15 Days
Anaerobic Digestion Waste Load Allocation

Scenario #2 (Gallons per Day)

- 100,000 gallons
- 45,000 gallons
- 32,000 gallons

Legend:
- Receiving Station
- Waste Sludge
- Primary Sludge

- 4.4 Million Gallon Digester Capacity
- Minimum Required HRT = 15 Days
Anaerobic Digestion Waste Load Allocation

Scenario #3 (Gallons per Day)

- 16 Loads
- 12 day HRT
- 100,000
- 45,000
- 32,000

- Receiving Station
- Waste Sludge
- Primary Sludge

2.2 Million Gallon Digester Capacity
Minimum Required HRT = 15 Days
Are POTWs a possible emergency option for dairy manure? Yes, **but** will dependent on a number of site specific factors.

“Farm” around dairy manure to other POTWs?

Future opportunities?
QUESTIONS?