Bunker Silage Storage Leachate and Runoff Management

Aaron Wunderlin, Discovery Farms
Becky Larson, Assistant Professor UW-Madison
Eric Cooley, Discovery Farms
Mike Holly, PhD Student UW-Madison

Bunker Silage Storage

Silage
- Fermented forage
- Forage examples
 - Corn
 - Hay
 - Sorghum
 - Other grasses
 - Legumes
 - Other forages
WI Standards

- Collection
 - Based on potential silage volume
- Filter strips
 - Based on feed storage area
 - Based on amount collected
- Certain conditions/situations may involve additional measures.

Harvest and Ensilage

Loading and Compaction
Loading and Compaction

Compaction

Ensiling Process

- 4 phases
 1. Aerobic
 2. Fermentation
 3. Stable
 4. Feed-out
1. Aerobic
• Plant and microbial respiration
• Uses sugars and oxygen
• Releases carbon dioxide, water, and heat
• Nutrient and dry matter losses
• Minimize this phase
 • Shorten filling time
 • Good compaction
 • Cover and seal quickly

2. Fermentation
• Anaerobic process
• Microbial competition for resources
• Protein breakdown
• Want lactic acid bacteria – lactic acid
 • Lowers pH
 • Limits other microbial activity
 • Reduces protein breakdown
 • Want rapid decrease in pH
• Preserves feed

3. Stable
• All sugars used up, little microbial activity
• Must remain anaerobic
 • Supports desired microbes
 • Air reactivates/supports undesired microbes
• Desired microbes
 • Preserves/stabilizes feed
 • Lactic acid bacteria
3. Stable cont.

- Undesired microbes
 - Acetic acid bacteria
 - Clostridia
 - Enterobacteria
 - Yeasts
 - Bacilli
 - Listeria
 - Molds
- Compete with desired microbes
- Causes spoilage
- Create health risks (animals and humans)

4. Feed-out

- Aerobic spoilage
 - Degradation of preserving organic acids
 - Heat – increases spoilage microorganism
- Limit exposure
- Feed-out rate should be greater than spoilage rate

Dry Weather Leachate
Leachate Production Based on Dry Matter Content

Recommended harvest moisture
65 - 70% Corn Silage
60 - 65% Hay Silage

Timing Leachate Production

Dry Weather Leachate

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Leachate</th>
<th>Liq. Dairy Manure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter</td>
<td>2-10%</td>
<td>5%</td>
</tr>
<tr>
<td>Total N (mg/L)</td>
<td>1,500-4,400</td>
<td>2,600</td>
</tr>
<tr>
<td>P (mg/L)</td>
<td>300-600</td>
<td>1,100</td>
</tr>
<tr>
<td>K (mg/L)</td>
<td>3,400-5,200</td>
<td>2,500</td>
</tr>
<tr>
<td>pH</td>
<td>3.6-5.5</td>
<td>7.4</td>
</tr>
<tr>
<td>BOD (mg/L)</td>
<td>12,000-90,000</td>
<td>5,000-10,000</td>
</tr>
</tbody>
</table>

1Cornell 1994
2Clarke and Stone 1995
Seepage

![Image of seepage](Image)

Litter and Spoilage

![Image of litter and spoilage](Image)

Runoff Concentrations

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Leachate<sup>1</sup></th>
<th>Liq. Dairy Manure<sup>2</sup></th>
<th>Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter</td>
<td>5% (2-10%)</td>
<td>5%</td>
<td>0-4.6%</td>
</tr>
<tr>
<td>Total N (mg/L)</td>
<td>1,500-4,400</td>
<td>2,600</td>
<td>20-1,356</td>
</tr>
<tr>
<td></td>
<td>300-600</td>
<td>1,100</td>
<td>8-659</td>
</tr>
<tr>
<td>P (mg/L)</td>
<td>3,400-5,200</td>
<td>2,500</td>
<td>n/a</td>
</tr>
<tr>
<td>K (mg/L)</td>
<td>3.6-5.5</td>
<td>7.4</td>
<td>4-7</td>
</tr>
<tr>
<td>BOD (mg/L)</td>
<td>12,000-90,000</td>
<td>5,000-10,000</td>
<td>500-61,210</td>
</tr>
</tbody>
</table>

¹ Cornell 1994

² Clarke and Stone 1995
Sample Concentrations

<table>
<thead>
<tr>
<th>Avg.</th>
<th>pH</th>
<th>TS (%)</th>
<th>COD (mg/l)</th>
<th>TP (mg/l)</th>
<th>TDP (mg/l)</th>
<th>Ammonia (mg/l)</th>
<th>TKN (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5.42</td>
<td>0.70</td>
<td>10,295.14</td>
<td>82.41</td>
<td>76.61</td>
<td>115.20</td>
<td>306.78</td>
</tr>
<tr>
<td>A2</td>
<td>5.29</td>
<td>0.44</td>
<td>6,449.53</td>
<td>47.47</td>
<td>42.04</td>
<td>39.49</td>
<td>182.26</td>
</tr>
<tr>
<td>C1</td>
<td>5.58</td>
<td>0.51</td>
<td>6,444.39</td>
<td>38.64</td>
<td>36.49</td>
<td>72.23</td>
<td>268.67</td>
</tr>
<tr>
<td>C2</td>
<td>5.16</td>
<td>0.37</td>
<td>4,384.90</td>
<td>32.40</td>
<td>29.95</td>
<td>39.62</td>
<td>193.42</td>
</tr>
</tbody>
</table>

Impacts of Runoff
Impacts of Runoff

Rain Water Infiltration

Spoilage and Health Risks

- Lower quality feed
- Reduced palatability
- Reduced feed intake
- Lung damage, e.g. “silo filler’s disease”
- Allergic reactions, e.g. “farmer’s lung”
- Botulism
- Listeriosis
- Myotoxins
- Toxic gas
- Digestive problems
- Fertility problems
- Reduced immune function
- Ketosis
- Liver and kidney damage
- Abortions
- Impair milk quality
- Death
Management to Minimize Silage Storage Runoff Constituent Concentrations

- Protect from water
 - Cover when filling if rain is forecast
 - Cover/wrap side walls
 - Cover and seal edges
 - Divert clean water away
- Minimize exposure when feeding
- Clean pad (remove litter) particularly if rain event is forecast
- Cover spoilage and litter piles until removal

Silage Storage Collection System Design

Objectives
- Minimize collection volumes
- Reduce storage and hauling requirements
- Reduce environmental impact
 - Collect high strength waste
 - Low strength waste to treatment systems

Current System Design
- Capture the initial volume and send to storage as it has the highest concentrations
- Assumes a first flush scenario, unconfirmed
- First flush exists in urban runoff, why not here

Collection Designs are Numerous
Collection Designs

Treatment Using Filter Strips

Does a First-Flush Exist?
? 1st Flush?

Why is it that only ~10% of the events have characteristics of a 1st flush?

<table>
<thead>
<tr>
<th>% of Events</th>
<th>Linear</th>
<th>Delayed flush</th>
<th>1st flush</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>73%</td>
<td>17%</td>
<td>10%</td>
</tr>
<tr>
<td>P</td>
<td>75%</td>
<td>13%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Relationship of Flow vs. Concentration

![Graph showing the relationship between flow (L/h) and COD (mg/L) over time (min).]

Constituent Correlations

- All constituent data (TKN, TP, TS, COD, BOD) was statistically correlated EXCEPT pH which was negatively correlated.
Annual Loading

- Investigate
 - Timing
 - Load collected vs. load to VTA
 - Volume collected vs. load collected

- Seasonality and a few events
 - Snowmelt
 - Big rains
 - Filling

Total TKN Loading

<table>
<thead>
<tr>
<th>Annual</th>
<th>Volume</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>~2.3 million gal.</td>
<td>3,366 lbs</td>
</tr>
<tr>
<td>Collected (% total)</td>
<td>41%</td>
<td>60%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annual</th>
<th>Volume</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>~2.8 million gal.</td>
<td>5,136 lbs</td>
</tr>
<tr>
<td>Collected (% total)</td>
<td>30%</td>
<td>44%</td>
</tr>
</tbody>
</table>
Total TKN Loading

<table>
<thead>
<tr>
<th>Annual</th>
<th>Volume</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>~277,000 gal.</td>
<td>375 lbs</td>
</tr>
<tr>
<td>Collected (% total)</td>
<td>12%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Total P Loading

<table>
<thead>
<tr>
<th>Annual</th>
<th>Volume</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>~2.3 million gal.</td>
<td>787 lbs</td>
</tr>
<tr>
<td>Collected (% total)</td>
<td>41%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Total P Loading

<table>
<thead>
<tr>
<th>Annual</th>
<th>Volume</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>~2.8 million gal.</td>
<td>1,469 lbs</td>
</tr>
<tr>
<td>Collected (% total)</td>
<td>30%</td>
<td>47%</td>
</tr>
</tbody>
</table>
Total P Loading

<table>
<thead>
<tr>
<th>Annual</th>
<th>Volume</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>~277,000 gal.</td>
<td>68 lbs</td>
</tr>
<tr>
<td>Collected (% total)</td>
<td>12%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Collection Design Recommendations

- First flush rarely exists!
 - Not the greatest load per volume
 - Collect low flow only
 - Or low flow throughout

- Additional collection within 2 weeks of filling.

Event Loading

	Flow weighted avg.	Max.	Min.	Median		
	pH	TP	TDP	Ammonia	TKN	
A1	5.43	5.1	4.8	0.5	6.5	18.5
	6.94	21.0	19.3	20.9	46.9	
Med	5.43	4.1	3.6	3.2	15.0	
A2	5.43	25.8	23.1	21.9	59.1	
	6.94	88.6	78.3	75.1	291.2	
Med	4.35	0.1	0.0	0.0	0.2	
Med	5.43	6.7	5.8	6.8	27.0	
C1	5.45	0.2	0.2	0.2	1.0	
	6.77	0.5	0.4	1.0	4.9	
Med	5.39	0.1	0.0	0.0	0.1	
C2	5.21	2.5	2.1	2.7	12.7	
	6.24	7.9	7.4	7.8	41.7	
Med	4.60	0.0	0.0	0.0	0.2	
Med	5.19	0.8	0.7	1.0	4.8	

Load for TP, TDP, Ammonia, and TKN are in lbs.
Collection Design Recommendations

- All flow to single collection point
- Provide subsurface drainage
- Inspect and Maintain facilities
 - Feed storage area
 - Collection system
 - Filter strip
 - Address potential issues

Design Concepts

Low Flow Collection

- Calculated greater loading collected when collecting the low flow.
- Calculated using 1% of the peak flowrate from a 2-year 24-hour design storm.
- Peak runoff flowrates can be calculated using one of many methods, e.g. Rational Method.
 - Calculate by hand or with software, e.g. HydroCAD.
Conductivity Meter to Route High Strength Runoff to Storage

Example Event with Conductivity: COD

Key Filter Strip Design Components

- Soil profile provides treatment
- Avoid high groundwater table or shallow depth to bedrock
- Ensure even application across filter strip
 - Irrigation pods
 - Grade evenly (difficult to achieve, need to supervise)
 - Rock checks for spreading
 - Prefer in ground with impermeable membrane
 - 2-4 inch round stone
 - Every 100 feet of length
 - Lip of impermeable membrane even with ground, rocks must be rise above the lip to catch debris

Poor Grading = Little Treatment
To be continued...

- Other analysis being conducted
- Determine recommended loading for filter strips
- Better understand timing & causes of variation
- Effects of feed vol. and surface coverage
- Conductivity as a metering option
- Economics

Thank You!

Questions/Comments

http://www.uwdiscoveryfarms.org