Making the Most of Manure: Emerging Waste-to-Energy Treatments

Keri B. Cantrell, Kyoung S. Ro, Patrick G. Hunt
USDA-ARS
Coastal Plains Soil, Water, and Plant Research Center
Florence, SC 29501

Isabel M. Lima
USDA-ARS
Southern Regional Research Center
New Orleans, LA 70124

March 29th, 2009

Content

- CAFO and Manure Introduction
- Thermochemical Technology Advantages
- Thermochemical Technologies
 - Pyrolysis
 - Direct Liquefaction
 - Gasification
 - Wet Gasification
- Proposed System Designs

CAFOs

- Decrease in number of farms with increase in size
- Limited Land Availability via Traditional Manure Management Practice
- Storage
- Land Application
- Relatively low capital and O&M costs

CAFOs

- Decrease in number of farms with increase in size
- Limited Land Availability via Traditional Manure Management Practice

Improvements Needed

- Surplus Manure from CAFOs – greater than crop nutrient demand
 - Transporting manure to remote crop fields
- Lagoon sludge
- Potential environmental risk
 - H2S, NH3, and CH4 from storages
 - Odors
 - Potential contamination of ground and surface waters
- Energy not utilized

Manure Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Dry Manures</th>
<th>Wet Manures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poultry Litter(^{(i)})</td>
<td>Soil-Surfaced Feedlot(^{(i)})</td>
</tr>
<tr>
<td>TS (%)</td>
<td>82.9</td>
<td>80.2</td>
</tr>
<tr>
<td>VS (% of TS)</td>
<td>61.1</td>
<td>33.8</td>
</tr>
<tr>
<td>Ash (% of TS)</td>
<td>22.3</td>
<td>58.7</td>
</tr>
<tr>
<td>Fixed Carbon (%TS)</td>
<td>16.6</td>
<td>7.5</td>
</tr>
<tr>
<td>Carbon Content (%db)</td>
<td>38.9</td>
<td>21.7</td>
</tr>
</tbody>
</table>

Manure Heating Values

![Manure Heating Values Graph]

Manure Management Practice
- Reduce CAFO environmental impact
- Remove large amounts of organic waste
- Harness inherent energy to produce energy-dense, alternative fuels

Research Focus
- Identify viable TCC technologies for treatment of animal waste
- Adapt this technology to be used on-farm
- Lead to providing a source of additional energy and value-added products

Biomass Energy Conversion Pathways

Thermochemical Conversion (TCC) Technology
- High temperature chemical reforming
 - Organic bonds broken
 - Intermediates reformed into synthesis gas and hydrocarbon fuels
 - Minor residual of minerals and fixed carbon

TCC Technology Advantages
- Requires Smaller Footprint
 - Compact design with shorter processing time
TCC Technology Advantages

- Requires Smaller Footprint
- Reduces Disposal Requirements
 - Mass consumer of feedstock
 - More animals per land unit
- Multiplicity of End Products & Applications
 - Heat & power generation
 - Chemical feedstocks
 - Transportation fuels
 - Industrial applications
 - Future carbon trading

TCC Technology Advantages

- Requires Smaller Footprint
- Reduces Disposal Requirements
- Multiplicity of End Products and Applications Including Energy
- Provides Socio-Environmental Benefits
 - Fresh/clean air
 - Potable water
 - Pathogen, pharmaceutical, and nuisance gas elimination

Pyrolysis

- Conversion of organic material with no oxygen

<table>
<thead>
<tr>
<th>Pyrolysis</th>
<th>Syngas</th>
<th>Bio-oil</th>
<th>Char (Biochar), Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass: Manure Waste Residues</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TCC Technologies

- Pyrolysis
- Direct Liquefaction
- Gasification
 - Wet Gasification

Pyrolysis: End Products

<table>
<thead>
<tr>
<th>Pyrolysis</th>
<th>Bio-oil</th>
<th>Syngas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass: Manure Waste Residues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Char. (Charcoal) (Biochar)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemical Feedstocks
- Liquid Fuels
- Bioenergy Feedstock
- Soil Amendment
- Combined Heat & Power
Pyrolysis

<table>
<thead>
<tr>
<th>Mode</th>
<th>Conditions</th>
<th>Liquid (Bio-oil)</th>
<th>Char</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>~500°C, vapor residence time ~1 sec</td>
<td>75</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Intermediate</td>
<td>~500°C, vapor residence time ~10-20 sec</td>
<td>50</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Slow</td>
<td>~400°C, vapor residence time ~hrs</td>
<td>30</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

Bridgewater, 2007

Slow Pyrolysis

Biomass: Manure Waste Residues → Slow Pyrolysis → Char, (Charcoal) (Biochar) → Activated Carbon

Char and Activated Carbon Making

Dried poultry manure → Pellet Mill → Charcoal Making

Activated Carbon: Physical Properties

<table>
<thead>
<tr>
<th></th>
<th>Yield %</th>
<th>Surface Area m²/g</th>
<th>Attrition %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broiler Litter</td>
<td>22.7</td>
<td>441</td>
<td>17.9</td>
</tr>
<tr>
<td>Broiler Cake</td>
<td>11.0</td>
<td>395</td>
<td>24.0</td>
</tr>
<tr>
<td>Turkey Litter</td>
<td>21.1</td>
<td>414</td>
<td>20.0</td>
</tr>
<tr>
<td>Turkey Cake</td>
<td>16.4</td>
<td>394</td>
<td>25.8</td>
</tr>
<tr>
<td>Duck Manure</td>
<td>18.9</td>
<td>902</td>
<td>14.7</td>
</tr>
<tr>
<td>PUR RF</td>
<td></td>
<td>474</td>
<td>32.0</td>
</tr>
<tr>
<td>Coal</td>
<td>70.0</td>
<td>0</td>
<td>13.8</td>
</tr>
<tr>
<td>Coconut Shell</td>
<td>22.7</td>
<td>843</td>
<td>22.3</td>
</tr>
<tr>
<td>Wood</td>
<td>17.9</td>
<td>849</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Activated Carbon: Metal Ion Adsorption

<table>
<thead>
<tr>
<th>mg-metal/g-carbon</th>
<th>Cu²⁺</th>
<th>Cd²⁺</th>
<th>Zn²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broiler Litter</td>
<td>76.3</td>
<td>122.5</td>
<td>87.0</td>
</tr>
<tr>
<td>Broiler Cake</td>
<td>120.7</td>
<td>149.0</td>
<td>126.9</td>
</tr>
<tr>
<td>Turkey Litter</td>
<td>104.9</td>
<td>161.9</td>
<td>113.2</td>
</tr>
<tr>
<td>Turkey Cake</td>
<td>90.2</td>
<td>166.4</td>
<td>109.2</td>
</tr>
</tbody>
</table>

Minimal adsorption for activated carbon from coal, wood, or coconut shells

Lima and Marshall, 2005
Activated Carbon: NH₃ Adsorption

Linear relationship between Bed Depth and NH₃ Breakthrough Time

Slow Pyrolysis

Biomass: Manure Waste Residues → Slow Pyrolysis → Charcoal (Biochar)

- Activated Carbon
- Bioenergy Feedstock
- Soil Amendment
- Carbon Sequestration

Biochar Production

- Bench-scale production
- Separated swine solids
- Pyrolyzed under N₂ at 500°C; no activator
- Stable product
- Little to no volatile material remaining
- Energy content increase 30-50%

Biochar Application

- Soil amendment
 - Bio-charcoal and poultry litter
- Test potential to:
 - Increase carbon content
 - Build aggregation

Charcoal added to soil for lab incubation study. Source: J.M. Novak, USDA-ARS

Energy Balance for Carbonizing Cellulose

- Biochar HHV
- Gas HHV
- Expansion of Gas
- Sensible Heat
- Heat of Reaction

Can we carbonize wet livestock wastes with positive energy budget?

Drying Energy

- Wet manure like dairy and swine require energy input to dry
- Decreases available energy of biochar for alternative uses

![Drying Energy Graph](image1)

Direct Liquefaction

- **Pyrolysis**
- **Direct Liquefaction**
 - Aqueous feedstock
 - Oxygen-limited atmosphere
 - Pressurized environment
 - 5 to 20 MPa
 - Bio-oil desired product
 - ~70%
- **Gasification**
 - Wet Gasification

![Direct Liquefaction Graph](image2)

Gasification

- **Pyrolysis**
- **Direct Liquefaction**
- **Gasification**
 - Dry (air-blown)
 - Wet Gasification

Gasification Process

- Air, water, and oxygen serve as oxidizers
- Temperature range 800-1000°C
Gasification Process
- **3 Main Stages**
 - Drying: 100-150°C
 - Volatilization: 250-550°C
 - Gasification: 700-1300°C

Low-grade gas
- Less than 5MJ/m³
- Natural gas: 37 MJ/m³
- Severely diluted with N₂ (~60%)
- H₂:CO vary
- Minor amounts of CH₄
- Residual solid product
 - Depends on ash content

Gasification: Enhancements
- **Steam Injection**
 - Improved gas quality with increased H₂
 - Decreased char formation
- **Catalyst Addition**
 - Examples: Langbeinite, Alkali Salts
 - Improve synthesis gas quality and production
 - CO₂ production cut in half
 - Increase gasification rate
 - Complete fixed carbon conversion

Wet Gasification
- **Catalytic Hydrothermal Processing**
 - Pacific Northwest National Laboratory (D. Elliott et al.)
 - 250 to 360 °C and up to 22 MPa (215 atm)
 - Ru catalysts
 - Tested with dairy manure
 - Elliott et al., 2004
 - 90% Heat recovery

Wet Gasification: Products
- CH₄: 55%
- CO₂: 45%
- Heat-Treated Water
- Oils, Tars
- Char, Ash

Wet Gasification System
- Wet Biomass
- Heat Exchange
- Catalytic Reactor, 350°C, 200 atm
- CH₄ & CO₂
- Electricity
- Water, NH₃, Salts
- Gas/Liquid Separation
- Pressure Letdown
- Electricity
- Wet Biomass

Ro et al., 2007
Energy Generation

- No Heat Recovery

- 90% Heat Recovery

Gas Comparison

- Wet Gasification vs. Anaerobic Digestion
- Model 5000 sow, farrow-to-wean farm
- Waste stream: 13,800 gpd
 - 3560 lb VS/d

- Modeled reactions
- Methane Concentration
 - 53% - Wet Gasification
 - 68% - Anaerobic Digestion
- VS-Carbon Conversion to Gas
 - >99% - Wet Gasification
 - 64% - Anaerobic Digestion

Proposed Wet Gasification Swine Manure Management System

- Livestock House
- Livestock Water Recycle
- Wet Gasification
- NH₃ Capture
- Combined Heating & Power
- Steam Reforming/Partial Oxidation
- Catalytic TCC
- Liquid Fuels
- CH₄ & CO₂
- Fertilizer

USDA-ARS Liquid Waste Treatment System

- Consumables
- Flush Water
- Livestock House
- Pathogen-free Water Recycle
- Solids Separation
- Nitrification/Denitrification
- Phosphorus Removal
- Compost
- Fertilizer
Considerations

- Many designs still in R&D stages
- Process Implementation
 - Efficient heat recovery/exchange for drying manures
 - High pressure delivery
 - Depressurization avoidance
 - Plugging
 - Robust catalyst
 - Efficient recovery of nitrogen
 - Simple, safe, and robust operation

USDA-ARS Liquid Waste Treatment System

- **Livestock House**
 - Flush Water
 - Pathogen-free Water Recycle
 - Solids Separation
 - Nitrification/Denitrification
 - Phosphorus Removal
 - Gasification
 - Slow Pyrolysis
 - Fertilizer

Bio-Thermochemical Waste Treatment System

- **Livestock House**
 - Microbial Conversion
 - Solids Separation
 - N-Removal
 - Drying Heat
 - Gas
 - CHP
 - Bio-char

- **Bioenergy Feedstock**
 - Gasification
 - Residue
 - Soil Amendment
 - Bioenergy Feedstock

- **Liquid Fuels**
 - CHP
 - Residue
 - Soil Amendment

- **'Green Coal'**
 - Slow Pyrolysis
 - Gas
 - Heat

- **Soil Amendment**
 - CHP
 - Residue
 - Soil Amendment

- **Compost/Land Application**
 - CHP
 - Compost/Land Application

- **Consumables**
 - Water Recycle
Considerations

- Feedstock Conditioning and Characterization
 - Solid Separation, Dewatering, and Drying
 - Grinding, Blending, and Pelletizing
 - Smaller, uniform particles aid efficiency and consistency
 - Sulfur and ash removal
 - Bed agglomeration
 - Silica-based sticky phase

- Solid Separation, Dewatering, and Drying

Next Generation Systems

- Effectively extract manure energy
- Eliminate ground and surface water contamination
- Nitrogen recovery potential
- Phosphorous concentrated in char/ash
- Substantial fugitive gas and odor removal
- Heat-treated recycled wastewater
- Destruction of pathogens, pharmaceuticals, and estrogens

Thank You

Dr. Keri Cantrell
USDA-ARS
Coastal Plains Soil, Water, and Plant Research Center
2611 W. Lucas St.
Florence, SC 29501
keri.cantrell@ars.usda.gov