The Effect of Maturity on NDF Digestibility
by P. C. Hoffman, K. M. Lundberg, L. M. Bauman and Randy D. Shaver

Introduction

Recently forage testing laboratories have begun to evaluate forages for neutral detergent fiber (NDF) digestibility. Evaluation of forage for NDF digestibility is being conducted to improve laboratory prediction of animal performance. One of the factors that influences NDF digestibility is the maturity stage at which the forage is harvested. This Focus on Forage article will highlight the effects of maturity on forage NDF digestibility.

Why does NDF digestibility decline with advancing maturity?

With advancing maturity, all plants, including grasses, legumes, corn, and small grains, undergo physiological changes. With advancing maturity, plants develop xylem tissue for water transport, accumulate cellulose and other complex carbohydrates, and these tissues become bound together by a process known as lignification. The combined effect of physiological changes results in plant cell walls (NDF), which are more difficult for rumen bacteria to attach to and to digest.

One simple, practical aspect of maturity effects on NDF digestibility in forages is related to changes in leaf-to-stem ratio. The NDF in legume or grass leaves is significantly more digestible than NDF in stem tissue. As forage matures, leaf-to-stem ratio declines (more stem, fewer leaves) and as a result NDF digestibility declines because a greater portion of the total NDF is NDF associated with stem tissue. Corn silage is unique in defining maturity effects on NDF digestibility because leaf-to-stem ratio is not greatly altered across normal harvest maturity stages. It is actually common to observe a decline in total NDF content in corn silage as the corn plant matures. This is because the corn ear is filling with grain, which dilutes the total forage NDF content. Despite this illusionary maturity effect, the NDF digestibility of the corn plant still declines with advancing maturity (Figure 3) mainly due to advancing lignification of cell walls (NDF).

How can forage NDF digestibility be best managed?

There is really nothing new as to how to manage forages to optimize NDF digestibility. Forages should still be harvested at their traditional stages of maturity (grasses = boot, legumes = bud, corn silage = ½ milk line, etc.) to maximize both yield and quality. Understanding the decline in NDF digestibility with advancing maturity simply places a double emphasis on harvesting forages at their proper maturity. We now understand that as forages mature, they accumulate more NDF, which decreases forage energy content and the NDF that is accumulating is becoming less digestible. This entire effect results in forages becoming less digestible at an increasing rate as maturity advances.
Figure 1. Effect of maturity stage on 48 h NDF digestibility of grass hay and silage.

Figure 2. Effect of maturity stage on 48 h NDF digestibility of legume hay and silage.
Figure 3. Effect of maturity stage on 48 h NDF digestibility of corn silage.

Figure 4. Effect of maturity stage on 48 h NDF digestibility of small grain silage.